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Fig. 1. Accidental Dance and Unfolding - we analyze visual rhythm in a collection of video to search for segments of unintentionally-rhythmic motion.
Then, we warp those segments into precise temporal alignment with a musical target to synthesize dance performances. On the left we see video frames
corresponding to the moments of four consecutive visual beats detected in a 2012 presidential debate video [WSJDigitalNetwork 2012]. These visual beats lie
at the high and low points of a repetitive up-and-down hand gesture. On the right is a warp curve showing the process of unfolding, which synthesizes dance
video corresponding to a random walk through the visual beats of a source segment.

We present a visual analogue for musical rhythm derived from an analysis of
motion in video, and show that alignment of visual rhythm with its musical
counterpart results in the appearance of dance. Central to our work is the
concept of visual beats — patterns of motion that can be shifted in time to
control visual rhythm. By warping visual beats into alignment with musical
beats, we can create or manipulate the appearance of dance in video. Using
this approach we demonstrate a variety of retargeting applications that
control musical synchronization of audio and video: we can change what
song performers are dancing to, warp irregular motion into alignment with
music so that it appears to be dancing, or search collections of video for
moments of accidentally dance-like motion that can be used to synthesize
musical performances.
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1 INTRODUCTION
Music and dance are closely related through the concept of rhythm,
which describes how events—e.g., the sound of an instrument or the
movement of a body—are distributed in time. Rhythm is in some
sense a very intuitive concept: infants can recognize and follow
basic rhythms at as early as six months of age [Cirelli et al. 2016;
Repp and Su 2013], and even some animals—certain parrots and
elephants, for example—are known to move in time with simple
music [Patel and Demorest 2013; Patel et al. [n. d.]]. However, the
task of quantifying rhythm is not trivial, and has been the topic of
extensive research in the context of both music [Böck and Gerhard
Widmer 2013; Dixon 2006; Ellis 2007; Goto 2002; Grosche et al. 2010;
Hu et al. 2017; Lerch 2012] and dance [Brick and Boker 2011; Dyaberi
et al. 2006]. Our work builds on that research to explore a visual
analogue for rhythm—which we call visual rhythm—in video. Just
as musical rhythm captures the temporal arrangement of sounds,
visual rhythm captures the temporal arrangement of visible motion.
We focus on analyzing that motion to identify structure related to
dance.

Our central hypothesis is that music and dance are characterized
by complementary rhythmic structure in audible and visible signals.
Our exploration of that structure builds on the concept of visual
beats—visual events that, when temporally aligned with musical
beats, create the appearance of dance. The relationship between
visual and musical beats provides a starting point from which we
derive visual analogues for other rhythmic concepts, including onset
strength and tempo. Visual beats also give us a recipe for manip-
ulating rhythmic structure in video: we first identify visual beats,
then time-warp those beats into alignment with a specified target.
Provided we are able to identify the necessary beats, we show that
it is possible to warp video into dance-like alignment with any song
of our choice.
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1.1 Applications
The quantification of visual rhythm enables many applications. We
focus primarily on those related to video retargeting, which com-
bines analysis and synthesis of dance. In addition to motivating our
work, these applications serve to test our basic assumptions about
visual rhythm and dance.

Dance Retargeting: By time-warping the visual beats of existing
dance footage into alignment with new music, we can change
the song that a performer is dancing to. This is a special case of
retargeting where we can assume that visual beats are already
aligned with musical beats in the source video, allowing us to
find them with simple audio beat tracking. We leverage this
to test our central hypothesis about visual beats and dance
separately from any computer vision algorithms.

Dancification: Our visual beat hypothesis allows for the existence
of visual beats in non-dance video, but implies such visual beats
should not be distributed according to any discernible tempo. If
we can find such beats through purely visual means, we can use
them to transform non-dance video into dance video. We call
this dancification. We can also use this strategy to improve bad
or off-tempo dancing, providing a kind of "auto-tune" for dance.

Accidental Dance: We can adapt our strategy for identrifying vi-
sual beats into a search criteria, which we can use to find seg-
ments of dance-like or near dance-like motion in large collec-
tions of video. If only short segments of such video can be found,
we generate random walks through the visual beats of those
segments to synthesize an arbitrary length of output dance
video.

Visual Instrument: Visual beats provide temporal control points
that can also be used for more general manipulation of video. For
example, by warping visual beats into alignment with the notes
of a musical instrument (e.g., recorded MIDI or a transcribed
performance) we can use that instrument as a musical interface
for editing video.

1.2 Beat Saliency
We begin by factoring the perception of beat — both for music and

dance — into different types of saliency, drawing on observations
from literature on the arts [Bolton 1894; Chion et al. 1994; Cowell and
Nicholls 1996; McPherson 2006; Vernallis 2004] as well as heuristics
used by related work on audio beat tracking [Ellis 2007; Goto 2002;
Grosche et al. 2010; Hu et al. 2017; Lerch 2012; McFee et al. 2015]
and the computational analysis of dance [Brick and Boker 2011; chul
Lee and kwon Lee 2005; Dyaberi et al. 2006; Kim et al. 2003; Liao
et al. 2015; P. Chen et al. 2011]. The saliency metrics described here
guide our design of heuristics for visual beat tracking in Section 4
and a dance-specific strategy for time-warping video in Section 5.
Musical beats are often defined as moments where a listener

would clap or tap their feet in accompaniment with music. This
definition relies on an implied measure of saliency, with different
sounds affecting the perception of beats in different ways. Most work
on rhythmic analysis approximates this saliency implicitly through
the use of a heuristic objective for finding beats in audio. Typically

that objective is expressed as a combination of two functions: one
temporally local function that measures musical onset strength
(indicating the start of musical notes), and another function that
measures adherence to a particular tempo, as indicated by periodic
patterns in the distribution of onset strength over time.
Our definition of visual beats implies a related type of saliency,

rooted in the perception of dance. We assume this saliency can also
be factored into local and rhythmic components, from which we
will derive visual complements for onset strength and tempo. Note
that the local component of visual beat saliency is different from
classic image saliency [Judd et al. 2009; Liu et al. 2009; Pritch et al.
2008] in that it is a function of visible motion, and should reflect
some measure of our ability to localize events in time.

We refer to the rhythmic components of visual and musical beat
saliency as rhythmic saliency and the local components as local
saliency.

1.3 Synchro-Saliency
The perception of dance is greatly influenced by musical accompani-
ment. This is why a dance can appear synchronized with one piece
of music, and out of place with another. We discuss this synchroniza-
tion in terms of what we call synchro-saliency, which measures
the perceived strength of relationships between visible and audible
events.
We describe any two functions ha (ta ) over audible events and

hv (tv ) over visible events as synchro-salient complements if their
product approximates synchro-saliency hs :

ha (ta )hv (tv ) ≈ hs (ta , tv ) (1)

In other words, synchro-salient complements are corresponding
functions over audio and video that indicate high synchro-saliency
when large values are aligned in time.

In Section 4 we design heuristics for the local and rhythmic
saliency of video to be synchro-salient complements of correspond-
ing heuristics used in audio beat detection. This lets us express
dancification as the alignment of rhythmic saliency with a target.

2 RELATED WORK
Computational editing and video manipulation are popular topics
in computer graphics and vision, with a strong history of work that
draws inspiration from the arts. Some has focused on automating
established editing tasks based on objectives derived from cine-
matography [Berthouzoz et al. 2012; Leake et al. 2017; Wang et al.
2008], while others have used computation to transform video into
new types of visualizations, digests, or summaries [Bai et al. 2012;
Burg and Beck 2012; Chuang et al. 2005; Pritch et al. 2008; Schödl
et al. 2000]. Like us, Wang et al. [2014] and Bazin et al. [2016] ex-
plore non-uniform time-warping of video according to an objective
function, in their case for the task of temporally aligning different
videos. Witkin and Popovic [1995], White et al. [2006], and Wang
et al. [2006] explore motion filters that change the visual style of
animations and video, employing a strategy that is similar in spirit
to the time-warping we introduce in Section 5.
The work of Davis et al. [2017; 2015a; 2015b; 2014] is similar to

ours in that it applies concepts from audio processing to motion
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derived from video. However, their work focuses on the frequen-
cies of extremely subtle motion, which they use to extract sound
from silent high-speed video [Davis et al. 2014], estimate material
properties [Davis et al. 2017, 2015a], and build interactive physical
models of captured objects [Davis et al. 2015b].
Several works in computer graphics have focused on synchro-

nizing audio and 3D animation. [chul Lee and kwon Lee 2005; Kim
et al. 2003; Langlois and James 2014], with work on synthesizing
dance in 3D character animation being especially relevant to our
own. Kim et al. [2003] and Lee et al. [2005] identify temporal control
points in semi-periodic human character animations, which they
then synchronize with MIDI music to synthesize dance. We perform
similar synchronization on a more general class of video and audio
signals by drawing a more explicit connection between rhythmic
structure in music and dance.
Most closely related to our work is that of Liao et al. [2015] and

Chen et al. [2011]. Like us, both explore music as a way to drive
the manipulation of video. However, their work is more application-
driven, and focuses primarily on the pace or placement of clips
relative to music. In contrast, we focus explicitly on characterizing
the relationship between musical rhythm and dance, introducing
visual beats as a way to drive more precise and dramatic time-
warping. These differences lead to very different-looking output;
Liao et al. produces well-paced montages, often with a time-lapse
aesthetic; Chen et al. gradually speed up or slow down video to
match music; while our output produces precisely synchronized
dance video.

All of the related works that use music to drive character anima-
tion [chul Lee and kwon Lee 2005; Kim et al. 2003] or video [Liao
et al. 2015; P. Chen et al. 2011] factor the saliency of dance into local
and rhythmic heuristics. Kim et al. [2003] even use this heuristic to
define something analogous to what we call visual beats. However,
their heuristic for rhythmic saliency measures error relative to fixed
reference beats of a constant tempo, limiting their ability to identify
visual beats in source animations with very different or locally vari-
able tempo. By contrast, our heuristic for rhythmic saliency extends
the dynamic programming approach that Ellis [2007] developed for
audio to incorporate a locally-adaptive measure of tempo, allowing
us to find visual beats in input with very irregular visual rhythm.
We also derive a dance-specific interpolation strategy for warping
visual beats, which we show to amplify rhythmic saliency in video.

3 QUANTIFYING RHYTHM IN AUDIO
Here we re-derive common strategies for quantifying rhythm in
audio, paying close attention to details that relate audio features
to the visual analogues we derive in Section 4. Each of the algo-
rithms described in this section can be found in the open-source
python package LibROSA [McFee et al. 2017, 2015], with more of
the underlying theory described in [Ellis 2007; Goto 2002; Grosche
et al. 2010; Hu et al. 2017; Lerch 2012]. Visualizations of the audio
features described here are shown next to their visual analogues in
Figure 2.
Starting with a 1D audio signal, we re-derive a method for ex-

tracting discrete audio beats, represented as different points in time.

Our approach builds on the common assumption that beats and
tempo are determined by the distribution of musical onsets in time.

3.1 Spectrograms and Spectral Flux
Onsets are generally indicated by a sudden increase in the volume
of a signal. However, volume alone is not sufficient to detect all
onsets. Consider an instrument like the theremin, capable of playing
sustained continuous sound that changes in pitch over time. Onsets
in this case are indicated by changes in pitch, rather than volume.
One way to measure both changes in volume and pitch is to use
a spectrogram, computed as the time-windowed FFT of an audio
signal x(t):

S(n,k) =

N
2 −1∑

q=− N
2

x(hn + q) w(q) e−
2jπ qk
N (2)

which yields the complex-valued matrix S , with S(n,k) representing
the kth frequency bin at time corresponding to frame n. Here,w is a
window function (e.g., a Hamming window), and h is a hop size (the
separation between successive windows), which also determines
the relationship between n and t . The amplitude of each S(n,k)
approximates the volume of x at time n and frequency k .
Spectrograms offer spectral flux, which measures the change

in amplitude of different frequencies over time, as an alternative to
volume for finding onsets [Böck and Gerhard Widmer 2013; Dixon
2006]:

SF (n,k) = |S(n,k)| − |S(n − 1,k)| (3)

3.2 Onset Envelopes
Onset envelopes (also sometimes called novelty curves) are an
approximate measure of how likely an onset has occurred at each
point in time. Each onsets generally coincides with an increase in
spectral flux at certain frequencies. One algorithm for computing an
onset envelope is to sum positive spectral flux over the frequencies of
a spectrogram, yielding a non-negative 1D time-signal ua(n) [Böck
and Gerhard Widmer 2013; Dixon 2006]:

ua(n) =

N
2 −1∑

k=− N
2

SF (n,k) + |SF (n,k)|

2
(4)

In Section 3.5 we use the onset strength measured in our onset
envelope as our heuristic for local saliency in audio beat detection.

3.3 Onset Detection
A large spike in ua(n) is typically sufficient but not necessary indi-
cation of an onset, while smoothness in ua(n) generally indicates
greater uncertainty in estimated onsets. Discrete onset detection
can therefore be formulated as peak-picking in the onset envelope.
One simple strategy for this is to look for local maxima that are
some threshold above their local mean.

3.4 Tempo and Tempograms
Tempo can be estimated by looking for spikes in the autocorrela-
tion of an onset envelope. Such spikes indicate self-similarity at a
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Fig. 2. Rhythmic Features in Audio and Video – The top row shows features used to quantify metric structure in audio. The bottom row shows the
synchro-salient complements that we use to quantify metric structure in video. The visualizations here correspond to the audio and video from footage of a
simple metronome [LumBeat 2013]. As we would expect from footage of a metronome, the detected visual metric structure is aligned with its synchro-salient
complement in audio.

particular time offset. The tempo is typically the largest spike corre-
sponding to the period of a countable frequency (e.g., 20-300bpm).

Time-varying tempo can bemeasuredwith a tempogram [Grosche
et al. 2010], which is derived from an onset envelope in a similar
manner to a spectrogram, but with the windowed FFT replaced by
unbiased local autocorrelation, giving us the equation:

Ta(n,k) =

N
2 −1∑

q= −N
2

ua(hn + q) ua(hn + q + k) w(q)
2N + 1 − k

(5)

wherew(q) is a 5-second window. The columns of Ta are typically
normalized by their maximum values to factor out the effect of local
volume, leaving Ta(n,k) a heat map of likely tempos over time. The
tempo τ (n) around frame n can be estimated in beats per minute
(bpm) as:

τ (n) =
60

Pk∗(n)
(6)

k∗(n) = argmax
k ∈K

Ta(n,k) (7)

where P is the period of a frame, and K is the set of values corre-
sponding to countable tempi (e.g., 20-300 bpm). Limiting the search
for km to K has the added benefit of discarding false peaks at small
offsets, which can be the result of local self-similarity in smooth
signals, and at large offsets, where the denominator in Equation 5
becomes small, boosting signal noise.
Note that by the Wiener-Khinchin theorem, Ta provides simi-

lar information to the power of a spectrogram. However, energy
exhibited at harmonics in power spectra tends to show up in subhar-
monics with autocorrelation. We discuss the advantage of favoring
subharmonics later in Section 4.5.

Rhythmic structure in audio can be seen as energy distributed in
horizontal lines (constant bpm over time) at a tempo and possibly
its harmonics and subharmonics, as seen in Figures 2, 3 and 7.

3.5 Beat Tracking
As we discussed in Section 1.2, beat tracking is often performed by
optimizing over a heuristic approximation of beat saliency. The local
component of that approximation favors placing beats on musical
onsets, while the rhythmic component favors distributing beats
according to a constant tempo. This results in an objective function
Ca:

Ca({ni }) =
| {ni } |∑
i=1

ua(ni ) + γ
| {ni } |∑
i=2

v(ni − ni−1,τ ) (8)

v(∆n,τ ) = −
(
log

P ∆n

τ

)2
(9)

where ua is the onset envelope, and v is a pairwise objective pe-
nalizing deviation from the tempo τ . The optimal sequence of beat
times can then be found through dynamic programming using the
recursive relationship:

Ca
∗(n) = ua(n) + max

m=0...n
{Ca

∗(m) + γv(n −m,τ )} (10)

where α controls the relative weight of the two terms. Each Ca∗(n)
can be traced to extract a sequence of beats. The sequence corre-
sponding to the maximum score is then returned as a final result.

4 QUANTIFYING RHYTHM IN VIDEO
In this section we derive visual analogues for each of the audio
features described in Section 3. Figure 2 visualizes each analogue
next to its musical counterpart.
We begin by choosing a heuristic for local saliency in video. In

general, we want this heuristic to be a synchro-salient complement
of whatever we use for audio. In Section 3 that was onset strength.
Onset strength is maximized at impulses and the onsets of impulse
responses. In the physical world, these tend to coincide with the
impact of a moving object and a resonating surface—often resulting
in sudden visible deceleration of the moving object. We use this

ACM Transactions on Graphics, Vol. 37, No. 4, Article 122. Publication date: August 2018.



Visual Rhythm and Beat • 122:5

sudden visible deceleration as the basis of our heuristic for local
saliency in video, which we call visible impact.
Our input is regular video, from which we first compute the

optical flow Ft+1(x ,y) from each frame t to its neighbor t + 1 using
the method of Bouguet [yves Bouguet 2000].

4.1 Directograms
In Section 3.1 we used the spectrogram S to factor volume changes
into different frequencies. Here we calculate a 2D matrix D(t ,θ ),
which we call a directogram, to factor motion into different angles.
Each column of D is computed as the weighted histogram of angles
for the optical flow field Ft of an input frame t :

D(t ,θ ) =
∑
x,y

|Ft (x ,y)| 1θ (∠Ft (x ,y)) (11)

1θ (ϕ) :=

{
1 if |θ − ϕ | ≤ 2π

Nbins

0 otherwise
(12)

Here1θ (ϕ) is an indicator function used to separate flow vectors into
Nbins different angular bins (i.e. calculate a weighted histogram).
Certain video codecs introduce repeated frames into videos, cre-

ating blank columns in D. We address this by applying a small, 3x3
median filter to D, noting that both dimensions of the kernel are
necessary to account for curved motion.

Our directogram now looks very similar to the amplitudes of our
spectrogram from Section 3.1: a scalar-valued matrix with x-axis
corresponding to time. From this, we can calculate per-direction
deceleration as an analogue for spectral flux using a formula nearly
identical to Equation 3:

DF (n,k) = D(n,k) − D(n − 1,k) (13)

4.2 Impact Envelopes
Equation 13 gives us a matrix DF with the same form as spectral
flux SF . We next compute our visual analogue for an onset enve-
lope, which we call an impact envelope, by summing over positive
entries in the columns of DF just as we did with SF in Equation 4:

uv(n) =

N
2 −1∑

k=− N
2

DF (n,k) + |DF (n,k)|

2
(14)

This gives us an impact envelope uv with precisely the same
form as an onset envelope. To account for large outlying spikes that
sometimes happen at shot boundaries (i.e., cuts), we clip the 99th
percentile of values in uv to the 98th percentile. We then normalize
uv by its maximum to make our calculations more consistent across
video resolutions.

4.3 Impact Detection
To detect discrete visible impacts, we first calculate the local meanuv
using a 0.1-second window, and local maxima using a 0.15-second
window. We then define impacts as local maxima that are above
their local mean by at least 10% of the envelope’s global maximum.

4.4 Visual Tempograms
Our visual analogue for a tempogram, which we call a visual tem-
pogram, is computed by simply replacing ua in Equation 5 with our
impact envelope uv:

Tv(n,k) =

N
2 −1∑

q= −N
2

uv(hn + q) uv(hn + q + k) w(q)
2N + 1 − k

(15)

As with audio tempograms, we can see rhythmic structure in
visual tempograms as horizontal lines at a visual tempo and option-
ally is subharmonics or harmonics. Figures 2, 3 and 7 show that
dance video is characterized by aligned structure in video and audio
tempograms—indicating that, at least under certain conditions, tem-
pograms and visual tempograms can be treated as synchro-salient
complements.

4.5 Visual Beat Tracking
For simple dance video we can identify visual beats by applying
the same algorithm described in Section 3.5 to an impact envelope.
However, most of our motivating applications use visual beats as
control points for some type of time-warping. In this case our criteria
for selecting visual beats may be quite different, as the quality of that
selection will be evaluated in some warped output. To account for
this, we must consider the effect of warping on local and rhythmic
saliency.

Recall that our local saliency metric is visible impact, which esti-
mates discontinuous deceleration in video. We first want to ensure
that time-warping does not create false visible impacts in our out-
put, which can happen when a discontinuous rate of time-warping
is applied to continuous motion in a source video. To avoid such
false impacts, we first restrict the selection of visual beats to those
local extrema of uv identified as impacts in Section 4.3. We then
enforce continuity on the rate of time-warping everywhere except
at visual beats (see Section 5), ensuring that new visual impacts are
not created at moments where there were none in the input.
With consideration limited to the detected impactsmi , we now

define an objective similar to Equation 8:

Cv({mi }) =

| {mi } |∑
i=1

uv(mi ) + γ

| {mi } |∑
i=2

V (mi ,mi−1) (16)

Here we have several options for the pairwise objective V .
In the audio case, we used a pairwise objective to penalize varia-

tion from the dominant tempo of our signal. For retargeting appli-
cations, we often assume there is no such dominant tempo to begin
with; our job, in a sense, is to create one. We can however penalize
variation from the dominant tempo of a target signal as a way of
favoring rates of time-warping in our output that are close to 1.
Another option is simply set V = 0, thereby turning all impacts

into visual beats. This strategy works well when all movements
in the video are large, and it ensures that all visible impacts map
to beats. However, it makes results sensitive to the window and
threshold parameters described in Section 4.3 when frequent, subtle
motion is present.
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“Just Dance Kids 2” - The Gummy Bear Song

“Zumba with Lauryn” dance to Danza Kuduro

2012 Presidential Debate Clip

Example Frame of Video Audio Tempogram Visual Tempogram

Fig. 3. Comparison of Regular (Audio) and Visual Tempograms for For Dance and Non-Dance Video – Here we compare audio (middle column)
and visual (right column) tempograms for three videos, with representative frames shown on the left. The top row visualizes dance video from a videogame
made for children [Ubisoft 2013]. The middle row shows the visual tempogram for a zumba dance routine [Zumba with Layryn 2014] set to the song Danza
Kuduro by Don Omar (Note: here we calculated the audio tempogram on an aligned version of the original track, as the audio recorded with the video was low
quality). The bottom row shows tempograms for a clip from the first 2012 Presidential Debate [WSJDigitalNetwork 2012] (the same source video is shown in
Figure 1 and featured in our supplemental video). In the dance examples (top two rows), we see high energy across matching harmonic tempos for both audio
and video. In the non-dance video (bottom row), local tempo is more ambiguous and less consistent.

For results in this paper we opt for a solution that adapts Equation
9 to a locally-varying notion of tempo. Our aim in this case is to bias
the selection of visual beats toward motion that is locally-rhythmic.
Such motion is common in certain types of video; humans, for
example, tend to take on momentary rhythms when using gestures
to emphasize speech [Turk 2002]. Using our visual tempogram Tv to
measure the strength of local rhythm at different beat separations
(i.e., tempo periods), we define the adaptive objective VT :

VT (mi ,mi−1) =Tv(mi ,
|mi −mi − 1|

P
) − 1 (17)

Recall that the tempogram Tv is normalized by the maximum of each
column, so VT takes the value 0 for impacts occuring at their local
tempi, and a value < 0 for impacts that deviate from those tempi.
We use a window size of 5 seconds to calculate Tv, and consider Tv
for any impacts separated by more than this to be 0.

Taken together, Equations 16 and 17 provide motivation for using
autocorrelation to measure tempo instead of a Fourier transform.
Both transformations are associated with an equivalance class of pe-
riods, with signals of one period generally exhibiting high response
across the corresponding equivalence class. In the Fourier trans-
form, equivalence classes correspond to a base frequency and its
harmonics. In autocorrelation, they correspond to a base frequency
and its subharmonics (integer divisors). Excess energy at subhar-
monics is better for the objective described in Equation 17 because
the corresponding periods are larger than that of the base frequency,
making them less likely to be chosen over the base frequency in
Equation 16 (as smaller beat separations result in more beats, and
therefore additional positive unary terms in our objective). Note
that by allowing impacts within an equivalence class to contribute
energy to the selection of other impacts, Equation 17 favors placing
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Fig. 4. Warp Curves - Warp curves plot time in our input as a function of
time in our output. Green dots represent the matching of a visual beat (a
horizontal in the graph) with an audio beat (a vertical). Here we see four
different interpolation strategies applied to the samemapping of visual beats
to audio beats. Cubic (a) and linear (b) interpolation tend to over-smooth
in time, damping visual impact. We opt for a parameterized interpolation
that accelerates time as it approaches visual beats. (c) shows this approach
with the parameter p set to 0.5. (d) shows the same approach with p = 0. In
our accidental dance results, we set p proportional to the impact strength
of the beat being approached. This avoids exaggerating motion toward
low-confidence visual beats.

Original Tempogram After Danci�cation with Self

Fig. 5. p=0 Time-Warping of a Video to Its Own Visual Beats - Here
we see the effect of p = 0 interpolation on the metronome video [LumBeat
2013] from Figure 2 when visual beats in the original video are warped
to themselves. The timing of visual beats does not change in this case,
but the acceleration and deceleration of our interpolation strategy empha-
sizes rhythmic structure already in the video. Note that linear and cubic
interpolation would have no effect on the input in this case.

impacts in harmonic relation to beats even if those impacts are not
selected themselves.

5 WARP CURVES
As mentioned in Section 4.5, ensuring that the rate of time-warping
is continuous everywhere other than visual beats avoids introduc-
ing spurious visible impacts. We can visualize this continuity by
plotting time in our output (target) against corresponding times
from our input (source), as in Figure 4. The resulting warp curves
have slopes equal to the instantaneous rate of time warping at each
corresponding time in our output.
Many interpolation strategies guarantee continuity; linear and

cubic interpolation are simple choices, and bothwork fine in practice.
However, when time is being stretched (i.e., when the target is longer
than the source), both linear and cubic interpolation tend to have
small derivatives at beat times, which effectively dampens visible
impact. This is problematic, as it reduces rhythmic saliency in our
output.
We offer an alternative interpolation strategy that accelerates

into visual beats, slowing the rate of time-warping before and after
acceleration to maintain synchronization with control points. We pa-
rameterize this strategy by separating interpolation between beats
into two segments. We then use linear interpolation for the first
segment, and add an acceleration term during the second, maintain-
ing continuity in the rate of warping throughout. Let f (t) represent
the map from target times to source times, normalized to the region
between a neighboring pair of corresponding control points. Given
the linear segment [0,p] and the accelerating segment (p, 1], we
have:

f (t) =
{
αt if t ≤ p

αt + д(t − p) if t > p
(18)

f (0) = 0 (19)
f (1) = 1 (20)
д(0) = 0 (21)
д′(0) = 0 (22)

setting our acceleration term to д(x) = x2, we can solve for the
relationship between α and p:

p = 1 −
√
1 − α (23)

α = 1 − (1 − p)2 (24)

we can now use p to specify constraints on how much time should
be spent accelerating (e.g., accelerate for one-fifth of a second before
every beat), or α to specify constraints on motion at the start of
each segment (e.g., slow to 1/3 the rate of linear interpolation at
the start of each segment). Visual comparisons can be found in our
supplemental material.

Figure 5 visualizes the effect of acceleration in our warping strat-
egy on rhythmic saliency.

6 UNFOLDING
While non-dance video often contains segments of momentarily
rhythmic motion, contiguous segments are rarely long enough to
fill a complete song. We address this by introducing a technique
called unfolding to extend short segments.
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Turtle Video Warp Curve From Turtle 
Video to Canned Heat

Fig. 6. Turtle Video Warp Curve — Left shows an example frame from
the turtle video [YouTube:shubhgupta91 2015]. Right shows a warp curve
corresponding to the green box regions of Figure 7.

Our interpolation strategy in Section 5 does not make any assump-
tion about the monotonicity of our warp curves, making interpola-
tion backward in time just as easy as forward; we need only specify
the appropriate control points and let our interpolation strategy
do the rest. Based on this observation, we can generate outputs of
arbitrary length by synthesizing random walks through our input.
Given a sequence B = {m0, . . .mk } of visual beats, we generate

a new sequence Bu by taking a random walk through B according
to an associated momentum parameter ϕ. Each iteration of the walk
starts at a beat mj , and takes either a forward step to mj+1, or a
backward step tomj−1, adding its new location toB upon completion
of the step. If the current location ism0, the next step will always
be forward; and if it ismk , the next step will always be backward.
Otherwise, the probability of stepping in the same direction as the
previous iteration is given by 0.5+ϕ, and the probability of reversing
direction is 0.5 − ϕ. In practice, we halt the random walk when the
distance from its current location tomk is equal to the number of
remaining target beats, thereby filling in the rest of B with forward
steps to ensure that the last target beat matches the last available
source beat. Once the sequence B has been generated, synthesizing
our output works the same as it did before.
When synthesizing unrolled output we always use the interpo-

lation strategy from Equation 18 with p < 1 to ensure that the
interpolated results are not symmetric around any of the visual
beats. This makes the reversal of time less noticeable [Pickup et al.
2014].

7 APPLICATIONS AND RESULTS
We explore 4 applications of visual rhythm, each related to synchro-
nizing motion in video with a musical target. Results, code, and
additional material can be found on our project website.

7.1 Dance Retargeting
Our first application is designed to test our central hypothesis
about visual beats independently of the vision-based algorithms
and heuristics introduced in Section 4.
Our hypothesis states that aligning visual beats with musical

beats creates the appearance of dance. If we assume the converse is
also true—that dance indicates an alignment of musical beats with
corresponding visual beats—we can test our hypothesis without any
analysis of the visual signal we are manipulating.
Given a dance video, we first detect musical beats in the accom-

panying audio signal. We then treat those musical beats as visual

beats, and warp them into alignment with newmusic using the same
approach outlined in Section 5. We used Equation 18 to produce
our results, setting α = 0 to maximize acceleration ahead of every
visual beat.

Dance retargeting is easy, fast, and fairly robust. A simple script
for retargeting YouTube videos, as well as several examples, can be
found on our project website.

7.2 Dancification
We can use the algorithms from Sections 4 and 5 to warp video with
irregularly-spaced (or sub-optimally-spaced) impacts into alignment
with music. This can be done to make non-dance video appear to
dance, or to “auto-tune” video that is already near-dance-like. For ex-
ample, many videos can be found on the internet of animals moving
in repetitive ways, put to music by human editors. The synchroniza-
tion of these videos is usually a bit off, as any irregularity in the
original motion will cause alignment to drift over time. Correcting
for this drift manually is very tedious, and therefore rarely done;
for example, we found more than ten different edits of the “turtle
dance” video (Figure 2) on Youtube, but none differed by more than
a constant speed factor from the others, leaving each of them out-
of-synch with music by the end of the video. Our dancification code
produces notably improved results, and can be used to tune the
video to a variety of songs without manual effort (see supplemental
material for results).

7.3 Accidental Dance
The objective function in Equation 16 gives us a way to score the set
of available visual beats in a video, with higher scores suggesting
better opportunity to create dance-like motion through warping.
We use this to search through collections of video to find source
material that can be turned into dance.
Using VT from Equation 17, we write a slightly modified recur-

rence relation for visual beat selection:

Cv
∗(mi ) = uv(mi ) + max

j ∈W (mi )
{Cv

∗(mj ) + γVT (mi ,mj )} (25)

where for some fixed constant w , W (mi ) contains all mj with
(mi −w) < mj < mi . Separations between detected impacts greater
thanw then segment a video into disconnected components, each
with their own optimal Cv∗(mi ) and corresponding sequence of vi-
sual beats. Large window sizes result in longer source segments but
allow for much higher rates of warping, which can look unnatural
in some case. We typically use a small window of ~1-3 seconds, and
sort the resulting segments according to their respective maximum
scores. For each segment, we extract a separate video clip to use in
retargeting, unfolding the result to the length of a target song as
described in Section 6. To avoid creating large accelerations where
the original motion in a video was more subtle, or where we are
less certain about visual impact, we set the parameter p in Equa-
tion 18 proportional to uv at each beat. This has the effect of only
accentuating beats with high confidence.
Our main supplemental video contains a montage of accidental

dancing results generated from 2012 and 2016 presidential and pri-
mary debate footage, with individual results linked from our project
website.
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Target
Audio

Source
Video

Danci�ed
Result

Tempograms (Full Signal) Spectrogram/Directograms Synchro-Saliency and BeatsFu
ll

Zoom

Fig. 7. Dancification as a transformation of visual metric structure — The top row visualizes a tempogram (left), power spectrogram (middle), and an
onset envelope (right) for the song Canned Heat by Jamiroquai. The spectrogram and onset envelope correspond to the boxed region of the tempogram, and
green dots on the onset envelope show the locations of musical beats. The middle row visualizes the corresponding visual complements for the turtle video
[YouTube:shubhgupta91 2015]. The bottom row shows what those same complements look like after retargeting the video to Canned Heat. From the left
column we can see that the music has a mostly constant tempo around 128bpm, while the visual tempo of our source video varies quite a bit over time. After
dancification, visual tempo is more constant and has been shifted to match that of the target audio. In the right column we can see how dancification shifts
visual beats that are irregularly distributed in the source video into alignment with the tempo of the target audio.

7.4 Visual Instrument
In one more experiment we explored the use of visual beats as tem-
poral control points for user-driven manipulation of video. For this
we selected three short videos: one of a cat meowing, a second fea-
turing a cat quickly wiggling, and a third featuring a cat performing
a begging trick. For each of these videos we detected visual beats,
from which we designated a subset of alternating ‘on’ and ‘off’ beats.
We then assigned each video to a MIDI instrument, corresponding
its respective ‘on’ beats with the onset of MIDI notes, and ‘off’ beats
with the release of those notes, using unfolding to allow for arbi-
trarily long input. The result is a set of virtual ‘puppets’ that can be
controlled by the user.
To demonstrate this, we played each of the three MIDI instru-

ments along with a different track of the song Eye of the Tiger by the
band Survivor. The resulting video, entitled ‘Eye of the Housecat’,
can be found on our project website.

8 DISCUSSION
This paper demonstrates how to create and manipulate the appear-
ance of dance in video based on an analysis of visible motion that
mirrors that of musical rhythm in audio.
We motivated much of our work with a speculative model of

saliency for music and dance in Section 1, introducing heuristics to
approximate components of that model throughout the paper. Here
we discuss limitations of our model and the heuristics we use to
approximate it, as well as opportunities for future work.

8.1 Limitations
Visible impact is a very simple heuristic for local saliency in video,
but it has many problems. For example, as we calculate it, visible
impact makes no distinction between the motion of a central subject
and background or camera motion. As a result, even minor camera
motion—which is easily ignored by human viewers—can create large
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visual impacts and lead to the selection of incorrect visual beats. This
is easy to see in our supplemental results on unstabilized footage
captured with hand-held cameras. Stabilization and a data-driven
prior on image saliency would likely help with this problem. Other
motion estimation approaches (e.g., point-based motion tracking)
could also make addressing these problems easier by allowing more
direct measurement of visible acceleration. A completely data-driven
estimate of local saliency could also work, given the right training
strategy and data.

Because we use musical beats as targets for warping, our results
are susceptible to errors in musical beat tracking. As an aggregated
attribute, tempo is generally easier to estimate than individual beats.
For this reason, our results occasionally follow the correct tempo,
but appear phase-shifted from the beat. This could be fixed with
better musical beat tracking, or a manually-specified target (e.g.,
MIDI or other annotated music).
The dynamic programming formulation of Equation 16 is de-

signed to find the optimal subset of visible impacts within a seg-
ment of video to use as visual beats. This is done by maximizing an
objective over all subsets using dynamic programming. While all
visible impacts are considered during this optimization, only those
selected as part of the optimal set directly influence the resulting
score. Optimality of the chosen subset imposes some limit on the
strength of spurious impacts between visual beats, but our objec-
tive does not explicitly penalize such impacts. This can result in
some distracting artifacts where locally salient motion is warped to
seemingly random times. It should be possible to add consideration
of such spurious impacts to our objective at the cost of additional
computation.

8.2 Future Work
Our model of saliency in Section 1 is largely speculative. Perceptual
studies could help refine and validate that model.

Several of the heuristics in our work sample a much larger design
space of possible analyses for music and dance. For example musical
onsets and visible impacts are one pair of synchro-salient comple-
ments for approximating local saliency in music and dance, but
others may lead to different interpolation strategies, or be suitable
for different styles of dance.

We are excited to explore new applications of visual rhythm and
beat. For example, we would like to automate synchronization of
several videos with different sources or instruments as an extension
of what we do with MIDI in Section 7.4, and are also interested in
using our work to analyze video content—for example, to evaluate
dancing quality, or characterize different dance styles in video.

Much of our work could also be adapted to synchronize videowith
non-musical targets. Our visual instrument application takes one
step in this direction by letting users control the target of warping.

8.3 Conclusion
By showing that we can adapt rhythmic analysis developed for audio
to the tasks of analyzing and synthesizing dance, our work provides
exciting new opportunities to build creative tools for manipulating
audio and video.
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